

Lecture 3: Spectral Content

Zonghu Liao China University of Petroleum

Learner Objectives

After this section, you will be able to:

- Visualize time- and space-variant signals in terms of their spectral components
- Be able to describe the impact of low-pass, high-pass, and band-pass filtering

 Evaluate strong, constructive interference from thin beds in terms of tuning thickness

Periodic vibrations (in time)

Amplitude

Period, T Frequency, f=1/T (measured in Hz) Time (s) Radial frequency, $\omega = 2\pi f = 2\pi T$ (measured in radians/s)

Radial frequency, $\omega = 2\pi I T$ (measured in Hz) Wavenumber, k= $2\pi I \lambda$ (measured in radians/m)

Spectral analysis of topography

Any function can be decomposed into sinusoids of different amplitude, phase, and frequency.

Spectral analysis of a seismic wavelet

(Yilmaz, 2001)

Forward Fourier Transforms

$$D_{c}(\omega) = \sum_{t=-T}^{T} d_{even}(t) \cos(\omega t) =$$
Fourier cosine transform

$$D_s(\omega) = \sum_{t=0}^{T} d_{odd}(t) \sin(\omega t)$$

Fourier sine transform

$$D(\omega) = \sum_{t=0}^{T} d(t) \exp(+i\omega t)$$

Complex Fourier transform

$$D(\omega) = D_c(\omega) + iD_s(\omega)$$

Inverse Fourier Transforms

$$d_{even}(t) = \sum_{\omega=0}^{\omega_{\text{max}}} D_c(\omega) \cos(\omega t)$$
 Fourier cosine transform

$$d_{odd}(t) = -\sum_{\omega=0}^{\omega_{\text{max}}} D_s(\omega) \sin(\omega t)$$
 Fourier sine transform

$$d(t) = \sum_{\omega=0}^{\omega_{\max}} D(\omega) \exp(-i\omega t)$$

Complex Fourier transform

$$d(t) = d_{even}(t) + d_{odd}(t)$$

Wavelength

$$\lambda = \frac{v}{f} = \frac{10000 \text{ ft/s}}{50/\text{s}} = 200 \text{ ft}$$

Original data (west Texas)

Low-pass filter (f_{high}=10 Hz)

Low-pass filter (f_{high}=20 Hz)

Low-pass filter (f_{high}=30 Hz)

0.6 Time (s) 0.1 1.4

Low-pass filter (f_{high}=40 Hz)

Low-pass filter (f_{high}=50 Hz)

Low-pass filter (f_{high}=60 Hz)

0.6 Time (s) 0.1 1.4

Low-pass filter (f_{high}=70 Hz)

0.6 Time (s) 0.1 1.4

Low-pass filter (f_{high}=80 Hz)

Low-pass filter (f_{high}=90 Hz)

High-pass filter (f_{low}=10 Hz)

High-pass filter (f_{low}=20 Hz)

High-pass filter (f_{low}=30 Hz)

High-pass filter (f_{low}=40 Hz)

High-pass filter (f_{low}=50 Hz)

High-pass filter (f_{low}=60 Hz)

High-pass filter (f_{low}=70 Hz)

High-pass filter (f_{low}=80 Hz)

High-pass filter (f_{low}=90 Hz)

Band-pass filter (0-10 Hz)

Band-pass filter (10-20 Hz)

Band-pass filter (30-40 Hz)

Band-pass filter (40-50 Hz)

Band-pass filter (50-60 Hz)

Band-pass filter (60-70 Hz)

Band-pass filter (70-80 Hz)

Band-pass filter (80-90 Hz)

Band-pass filter (90-100 Hz)

50 Hz wavelet Period=1/50=0.020 s

Layer Thickness and resolution

5-10-30-40 Hz

5-10-60-80 Hz

(Martin, 2004)

Long window spectral decomposition and the convolutional model

Spectral balancing

Original data (west Texas)

Spectrally balanced data

Original data

Data after spectral balancing

Bandwidth Extension

(Carrao et al., 2011)

Hz

Bandwidth Extension

Original data

Data after sparse spike deconvolution

Warning! Always compare resulting data to well logs after bandwidth extension!

Bandwidth Extension

Original data

Data after sparse spike deconvolution

Bandwidth Extension: Check well ties!

Bandwidth Extension: Influence on impedance inversion

Original data

Data after sparse spike deconvolution

Improving interpretability by throwing away data

Poor statics negatively impact the high frequencies in this broad band 8-80 Hz data Data filtered back to 8-16 Hz (low frequencies less impacted by poor statics)

(Hardage, 2009)

6-53

Improving interpretability by throwing away data

Poor statics negatively impact the high frequencies in this broad band 8-80 Hz data Data filtered back to 8-16 Hz (low frequencies less impacted by poor statics)

(Hardage, 2009)

Seismic bandwidth and resolution

•We obtain low frequencies(< 5 Hz) from horizon interpretation, velocity analysis, and well logs
•We obtain medium frequencies (5-100 Hz) from seismic waveforms (amplitude data)
•We obtain high frequencies (> 150 Hz) from integrating well control using geostatistics or neural networks

(Dubrule, 2003)

EXAMPLE OF GEOSTATISTICAL INVERSION RESULTS (LAMY ET AL., 1999)

(**Dubrule**, 2003)

10-56

Thin bed tuning and the wedge model

Summary

- Seismic data are band-limited, limiting vertical and lateral resolution
- The loss of high frequencies limits our ability to resolve thin beds
- The loss of low frequencies limits our ability to estimate the actual value of impedance, and hence lithology and porosity
- Constructive and destructive interference gives rise to the tuning frequency phenomenon, which allows us to estimate layer thicknesses below ¹/₄ wavelength limits